>Performance optimization is hard because it’s fundamentally a brute-force task, and there’s nothing you can do about it.
fundamentally disagree. First it is a building of a mental model of what happens, a kind of analysis stage, and then compare it to the mental model of how it should or could work or producing a more efficient algorithm/way of accomplishing the target task.
When people try to brute-force, lets try this or this, without having the model in mind, that is frequently a waste, and even when/if it produces some improvement there is no understanding and guarantee what use cases the improvement will cover, whether it would regress some use cases, whether it still be there after we push those new features/fixes/etc.
The problem is that way too often, the model simply doesn't capture enough complexity to be applicable. This happens rarely during high-level optimization but is very common during microoptimization. You can build a model, and it will give you good enough results, but you won't be able to extract those last bits of performance you need to surpass SOTA.
fundamentally disagree. First it is a building of a mental model of what happens, a kind of analysis stage, and then compare it to the mental model of how it should or could work or producing a more efficient algorithm/way of accomplishing the target task.
When people try to brute-force, lets try this or this, without having the model in mind, that is frequently a waste, and even when/if it produces some improvement there is no understanding and guarantee what use cases the improvement will cover, whether it would regress some use cases, whether it still be there after we push those new features/fixes/etc.