Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame([{'name': 'foo','date': pd.Timestamp('2024-01-23T00:00:00Z')},
{'name': 'bar','date': pd.Timestamp('2024-01-23T12:00:00Z')}])
df.to_csv('test.csv', index=False)
df_read = pd.read_csv('test.csv', dtype=str, parse_dates=['date'])
print(df_read.dtypes) # The dtype of column 'date' should be datetime-like, but we got 'object' instead
Issue Description
Reading a csv file and trying to specify both dtype and parse_dates will not parse the columns specified in parse_dates as dates, but strings instead
Expected Behavior
The code in the example should print:
name object
date datetime64[ns, UTC]
dtype: object
Installed Versions
INSTALLED VERSIONS
commit : f538741
python : 3.11.5.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22621
machine : AMD64
processor : Intel64 Family 6 Model 183 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Chinese (Simplified)_China.936
pandas : 2.2.0
numpy : 1.24.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.3
Cython : None
pytest : 7.4.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : 1.1
pymysql : 1.0.2
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.9.2
gcsfs : None
matplotlib : 3.7.2
numba : 0.58.0
numexpr : 2.8.7
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.11.3
sqlalchemy : 2.0.22
tables : None
tabulate : 0.9.0
xarray : None
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None