Skip to content

TST: add validation checks on levels keyword from pd.concat #46653

Closed
@GYHHAHA

Description

@GYHHAHA

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

>>> df1 = pd.DataFrame({"A": [1]}, index=["x"])
>>> df2 = pd.DataFrame({"A": [1]}, index=["y"])
>>> pd.concat([df1, df2], keys=["x", "y"], levels=[["x", "y", "y"]])
     A
x x  1
y y  1


```python
>>> df1 = pd.DataFrame({"A": [1]}, index=["x"])
>>> df2 = pd.DataFrame({"A": [1]}, index=["y"])
>>> pd.concat([df1, df2], levels=[["x", "y"]])
   A
x  1
y  1

Issue Description

First, we should raise when levels duplicated. Second, when levels specified and keys not given, then we should also raise since this is unreasonable. (DOC only mentions infering levels from keys but not infering keys from levels)

Expected Behavior

>>> df1 = pd.DataFrame({"A": [1]}, index=["x"])
>>> df2 = pd.DataFrame({"A": [1]}, index=["y"])
>>> pd.concat([df1, df2], keys=["x", "y"], levels=[["x", "y", "y"]])
ValueError: Level values not unique: ['x', 'y', 'y']
>>> df1 = pd.DataFrame({"A": [1]}, index=["x"])
>>> df2 = pd.DataFrame({"A": [1]}, index=["y"])
>>> pd.concat([df1, df2], levels=[["x", "y"]])
ValueError: levels supported only when keys not None

Installed Versions

1.4.1

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugError ReportingIncorrect or improved errors from pandasReshapingConcat, Merge/Join, Stack/Unstack, Explode

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions