Skip to content

PERF: strftime is slow #44764

Open
Open
@auderson

Description

@auderson

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the master branch of pandas.

Reproducible Example

I found pd.DatatimeIndex.strftime is pretty slow when data is large.

In the following I made a simple benchmark. method_b first stores 'year', 'month', 'day', 'hour', 'minute', 'second', then convert them to string with f-formatter. Although it's written in python, the time spent is significantly lower.

import time
import numpy as np
import pandas as pd
from joblib import Parallel, delayed

def timer(f):
    def inner(*args, **kwargs):
        s = time.time()
        result = f(*args, **kwargs)
        e = time.time()
        return e - s
    return inner


@timer
def method_a(index):
    return index.strftime("%Y-%m-%d %H:%M:%S")

@timer
def method_b(index):
    attrs = ('year', 'month', 'day', 'hour', 'minute', 'second')
    parts = [getattr(index, at) for at in attrs]
    b = []
    for year, month, day, hour, minute, second in zip(*parts):
        b.append(f'{year}-{month:02}-{day:02} {hour:02}:{minute:02}:{second:02}')
    b = pd.Index(b)
    return b

index = pd.date_range('2000', '2020', freq='1min')

@delayed
def profile(p):
    n = int(10 ** p)
    time_a = method_a(index[:n])
    time_b = method_b(index[:n])
    return n, time_a, time_b

records = Parallel(10, verbose=10)(profile(p) for p in np.arange(1, 7.1, 0.1))
pd.DataFrame(records, columns=['n', 'time_a', 'time_b']).set_index('n').plot(figsize=(10, 8))

image

Installed Versions

INSTALLED VERSIONS

commit : 945c9ed
python : 3.8.10.final.0
python-bits : 64
OS : Linux
OS-release : 5.8.0-63-generic
Version : #71-Ubuntu SMP Tue Jul 13 15:59:12 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.3.4
numpy : 1.20.0
pytz : 2021.3
dateutil : 2.8.2
pip : 21.2.4
setuptools : 58.0.4
Cython : 0.29.24
pytest : 6.2.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.6.2
html5lib : 1.1
pymysql : 0.9.3
psycopg2 : 2.8.6 (dt dec pq3 ext lo64)
jinja2 : 2.11.3
IPython : 7.29.0
pandas_datareader: 0.9.0
bs4 : None
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.4.3
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 5.0.0
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : 1.4.22
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
numba : 0.54.1

Prior Performance

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    DatetimeDatetime data dtypePerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions