Skip to content

BUG: pd.apply returns a dataframe when empty dataframe instead of a series #39111

Closed
@skarchmit

Description

@skarchmit
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

>>> import pandas as pd
>>> pd.DataFrame({'a': [1,2], 'b': [3, 0]})
   a  b
0  1  3
1  2  0
>>> df = pd.DataFrame({'a': [1,2], 'b': [3, 0]})
>>> df
   a  b
0  1  3
1  2  0
>>> df.apply(lambda x: max(x['a'], x['b']), axis = 1)
0    3
1    2
dtype: int64
>>> df.head(0).apply(lambda x: max(x['a'], x['b']), axis = 1)
Empty DataFrame
Columns: [a, b]
Index: []
>>>

Problem description

When running .apply() to a dataframe, I'm expecting to get a pd.Series back to add as an additional column. If the dataframe is empty and I run .apply() on it, it will return a dataframe and I cannot add it as a column

Expected Output

Output of pd.show_versions()

>>> pd.show_versions()

INSTALLED VERSIONS
------------------
commit           : d9fff2792bf16178d4e450fe7384244e50635733
python           : 3.8.5.final.0
python-bits      : 64
OS               : Darwin
OS-release       : 20.2.0
Version          : Darwin Kernel Version 20.2.0: Wed Dec  2 20:39:59 PST 2020; root:xnu-7195.60.75~1/RELEASE_X86_64
machine          : x86_64
processor        : i386
byteorder        : little
LC_ALL           : None
LANG             : en_US.UTF-8
LOCALE           : en_US.UTF-8

pandas           : 1.1.0
numpy            : 1.19.1
pytz             : 2020.5
dateutil         : 2.8.1
pip              : 20.2.2
setuptools       : 49.6.0.post20201009
Cython           : None
pytest           : 6.2.1
hypothesis       : None
sphinx           : None
blosc            : None
feather          : 0.4.1
xlsxwriter       : 1.3.7
lxml.etree       : None
html5lib         : None
pymysql          : None
psycopg2         : None
jinja2           : 2.11.2
IPython          : 7.19.0
pandas_datareader: None
bs4              : None
bottleneck       : None
fsspec           : 0.8.5
fastparquet      : None
gcsfs            : None
matplotlib       : 3.3.0
numexpr          : None
odfpy            : None
openpyxl         : 3.0.5
pandas_gbq       : None
pyarrow          : 2.0.0
pytables         : None
pyxlsb           : None
s3fs             : 0.5.1
scipy            : 1.5.2
sqlalchemy       : 1.3.19
tables           : None
tabulate         : 0.8.7
xarray           : None
xlrd             : 1.2.0
xlwt             : None
numba            : 0.50.1
>>>

[paste the output of pd.show_versions() here leaving a blank line after the details tag]

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapBug

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions