Back to all solutions
#1802 - Maximum Value at a Given Index in a Bounded Array
Problem Description
You are given three positive integers: n, index, and maxSum. You want to construct an array nums (0-indexed) that satisfies the following conditions:
- nums.length == n
- nums[i] is a positive integer where 0 <= i < n.
- abs(nums[i] - nums[i+1]) <= 1 where 0 <= i < n-1.
- The sum of all the elements of nums does not exceed maxSum.
- nums[index] is maximized.
Return nums[index] of the constructed array.
Note that abs(x) equals x if x >= 0, and -x otherwise.
Solution
/**
* @param {number} n
* @param {number} index
* @param {number} maxSum
* @return {number}
*/
var maxValue = function(n, index, maxSum) {
function minSumRequired(peak) {
const leftCount = Math.min(index, peak - 1);
const rightCount = Math.min(n - index - 1, peak - 1);
let sum = peak;
sum += (peak - 1 + peak - leftCount) * leftCount / 2;
sum += (peak - 1 + peak - rightCount) * rightCount / 2;
sum += (index - leftCount) + (n - index - 1 - rightCount);
return sum;
}
let low = 1;
let high = maxSum;
let result = 1;
while (low <= high) {
const mid = Math.floor((low + high) / 2);
if (minSumRequired(mid) <= maxSum) {
result = mid;
low = mid + 1;
} else {
high = mid - 1;
}
}
return result;
};